ગુજરાત રાજ્યના શિક્ષણવિભાગના પત્ર-ક્રમાંક મશબ/1119/611/છ, તા.09-08-2019-થી મંજૂર

CHEMISTRY PRACTICAL RECORD BOOK (JOURNAL)

Standard XI

PLEDGE

India is my country.

All Indians are my brothers and sisters.

I love my country and I am proud of its rich and varied heritage.

I shall always strive to be worthy of it.

I shall respect my parents, teachers and all my elders and treat everyone with courtesy.

I pledge my devotion to my country and its people.

My happiness lies in their well-being and prosperity.

રાજ્ય સરકારની વિનામૂલ્યે યોજના હેઠળનું પુસ્તક

Gujarat State Board of School Textbooks 'Vidyayan', Sector 10-A, Gandhinagar-382010

© Gujarat State Board of School Textbooks, Gandhinagar Copyright of this book is reserved by Gujarat State Board of School Textbooks. No reproduction of this book in whole or in part, or in any form is permitted without written permission of the Director of the Board.

Writers

Dr. Mayur C. Shah

Shri Mukesh B. Patel

Shri Shekhar B. Gor

Shri Naresh P. Bohra

Translators

Dr. Mayur C. Shah

Shri Mukesh B. Patel

Shri Shekhar B. Gor

Shri Naresh P. Bohra

Reviewers

Dr. I. M. Bhatt

Shri Nirav N. Shah

Shri Kiran K. Purohit

Shri B. R. Rajput

Shri Yash Vyas

Language Correction

Shri V. Balakrishnan

Co-ordinator

Dr. Chirag H. Patel

(Subject Co-ordinator : Physics)

Preparation and Planning

Shri Haren Shah

(Dy. Director : Academic)

Lay-out and Planning

Shri Haresh S. Limbachiya

(Dy. Director: Production)

PREFACE

In accordance with the Government's Policy to implement uniformed curriculum at national level, the Government of Gujarat and Secondary and Higher Secondary Board of Education, Gujarat State have decided to implement the NCERT Textbooks at school level directly as per resolution no M.SH.B./1217/1036/CHH dated 25-10-17. With reference to that Gujarat State Board of School Textbooks is pleased to introduce this **Chemistry Practical Record Book (Journal)** prepared for **Standard XI** before the students.

Before publishing the Chemistry Practical Record Book (Journal) its manuscript has been fully reviewed by expert professors and teachers. According to their suggestions, we have made necessary changes in the manuscript before publishing the Chemistry Practical Record Book (Journal). The Board has taken special care to ensure that this Chemistry Practical Record Book (Journal) is made interesting, useful and free from errors. However, to improve the quality of the Chemistry Practical Record Book (Journal), we welcome suggestions, from people interested in education.

P. Bharathi (IAS)

Director
Date:09-12-2019

Executive President Gandhinagar

First Edition: 2019, Reprint: 2020

Published by: P. Bharathi, Director, on behalf of Gujarat State Board of School Textbooks, 'Vidyayan',

Sector 10-A, Gandhinagar

Printed by :

FUNDAMENTAL DUTIES

It shall be the duty of every citizen of India:*

- (a) To abide by the Constitution and respect its ideals and institutions, the National Flag and the National Anthem;
- (b) To cherish and follow the noble ideals which inspired our national struggle for freedom:
- (c) To uphold and protect the sovereignty, unity and integrity of India;
- (d) To defend the country and render national service when called upon to do so;
- (e) To promote harmony and the spirit of common brotherhood amongst all the people of India transcending religions, linguistic and regional or sectional diversities; to renounce practices derogatory to the dignity of women;
- (f) To value and preserve the rich heritage of our composite culture;
- (g) To protect and improve the natural environment including forests, lakes, rivers and wildlife, and to have compassion for living creatures;
- (h) To develop the scientific temper, humanism and the spirit of inquiry and reform;
- (i) To safeguard public property and to abjure violence;
- (j) To strive towards excellence in all spheres of individual and collective activity so that the nation constantly rises to higher levels of endeavour and achievement.
- (k) who is a parent or guardian to provide opportunities for education to his child or, as the case may be, ward between the age of six and fourteen years.

^{*} Constitution of India: Section 51-A

Exam	Seat	No	•	
LAXALI	1762	1111		

CHEMISTRY PRACTICAL RECORD BOOK (JOURNAL)

Year :
_ chemistry practicals out o

INDEX

No.	Practical	Page No.	Date	Sign
1.	Preparation of mL of 0.1M standard solution of oxalic acid.			
2.	To determine the concentration (strength) of given dilute sodium hydroxide solution by titrating it against a 0.1 M oxalic acid solution.			
3.	To determine the concentration (strength) of given dilute potassium hydroxide solution by titrating it against a 0.1 M oxalic acid solution.			
4.	Preparation of mL of 0.1M standard solution of sodium carbonate.			
5.	To determine the concentration (strength) of given dilute hydrochloric acid solution by titrating it against a solution of 0.1 M sodium carbonate.			
6.	To determine the concentration (strength) of given dilute nitric acid solution by titrating it against a solution of 0.1 M sodium carbonate.			
7.	To determine the pH of some fruit juices.			
8.	To observe the variation in pH of acid/base with dilution.			
9.	To study the variation in pH by common ion effect in case of weak acids and weak bases.			
10.	To study the change in pH during the titration of a strong acid with a strong base by using universal indicator.			
11.	To study pH of solutions of sodium chloride, ferric chloride and sodium carbonate.			
12.	To study the shift in equilibrium in the reaction of ferric ions and thiocyanate ions by increasing the concentration of any one of these ions.			

No.	Practical	Page No.	Date	Sign
13.	To study the shift in equilibrium in the reaction between $[Co(H_2O)_6]^{2+}$ and Cl^- ions, by changing the concentration of any one of these ions.			
14.	To detect the positive and negative ions present in the given salt by qualitative analysis.			
15.	To detect the positive and negative ions present in the given salt by qualitative analysis.			
16.	To detect the positive and negative ions present in the given salt by qualitative analysis.			
17.	To detect the positive and negative ions present in the given salt by qualitative analysis.			
18.	To detect the positive and negative ions present in the given salt by qualitative analysis.			
19.	To detect the positive and negative ions present in the given salt by qualitative analysis.			
20.	To detect the positive and negative ions present in the given salt by qualitative analysis			
21.	To detect the positive and negative ions present in the given salt by qualitative analysis.			
22.	To purify compound by crystallization.			
23.	Determination of melting point of a solid organic compound.			
24.	Determination of boiling point of a liquid organic compound.			

D .		
Date	•	

	Date.
	Experiment 1
Aim :	Preparation of mL of 0.1M standard solution of oxalic acid. [Reference: Experiment No. 2.1 of Laboratory Manual]
Appai	ratus Required :
- Mater -	rials Required :
Calcu	lation :
	Standard solution will be prepared according to the experiment procedure by using the required amount of compound in gram calculated with the help of following formula.
	Weight of compound = $\frac{\text{Molarity} \times \text{Molar mass} \times \text{Volume of solution (mL)}}{1000}$
	\therefore Weight of oxalic acid = $\frac{1000}{}$
	= g
Proce	dure :
-	
-	
-	
-	

ns	swer the following questions:
•	What is the formula and the basicity of hydrated oxalic acid and anhydrous oxalic acid?
	What do you mean by a molar solution ?
	Why are the standard solutions always prepared in a volumetric flask?
•	How will you prepare 250 mL of 0.05 M oxalic acid solution ?

		its standard solution ?	
What type of si	ubstance can be used t	for preparing standard solution ?)
What is meant	by "weighing by trans	sfer"? When is this used ?	
		Sign of subject teache	r/Lab
		Sign of subject teache	r/Lab

LISTA	•	
17010		

Aim: To determine the concentration (strength) of given dilute sodium hydroxide solution by titrating it against a 0.1 M oxalic acid solution.

	[Reference: Experiment No. 6.1 of Laboratory Manual]
ppa	aratus Required:
Mate	erials Required :
•	Burette :
•	Conical flask :
•	Indicator:
•	Colour change :
•	Chemical Equation:
Proc	edure :

Obse	ervation:							
	Burette Reading	I	II	III	IV	Concordant Reading (mL)		
	Final Reading (mL)							
	Initial Reading (mL)							
	Difference (mL)					-		
l								
Calc	Calculation:							
(1)	Molar mass of NaOl	H:						
(2)	Determination of mo	larity of	NaOH so	lution :				
	Sodium hydroxide	Oxalic	acid					
	$a_1 M_1 V_1 =$	$a_2 M_2$	V,					
	1 1 1	2 2	4					

where	a ₁ = Acidity of	=	
	M ₁ = Molarity of	_=	
	V ₁ = Volume of	=	
	a ₂ = Basicity of	=	
	M ₂ = Molarity of	. =	
	V ₂ = Volume of	=	
	- -		

	∴ Molarity of NaOH solution =		M	
(3)	Concentration (strength) of NaOH solution	=	Molarity × Molar mass	
		=		
		=		g/L
Resi	ılt :			
	Concentration of NaOH solution is		g/L	

hydroxide? Can the titration be performed by using some other indicated with the case of colourless and the upper meniscus for solutions of dark colour?	
What is an indicator? Which indicator is used in the titration of oxalic hydroxide? Can the titration be performed by using some other indicators in the case of colourless and the upper meniscus in the case of colourless as solutions and the upper meniscus for solutions of dark colour? Explain the term 'end point'.	
solutions and the upper meniscus for solutions of dark colour ?	
solutions and the upper meniscus for solutions of dark colour ?	
solutions and the upper meniscus for solutions of dark colour ?	
Explain the term 'end point'.	and transpa
Explain the term 'end point'.	
Explain the term 'end point'.	

Explain t	ne term basicity of an	acid and acidity of a base ?	
For titrat indicators		enolphthalein and methyl orange, both	h are sı
What is	meant by the term, 'con	cordant readings'?	
		in the burette and sodium hydroxide sout the limitations of doing so if any.	
		Sign of subject teache	Tr. No.

D 4		
I late	•	
Date	•	

Aim: To determine the concentration (strength) of given dilute potassium hydroxide solution by titrating it against a 0.1 M oxalic acid solution.

	[Reference : Experiment No. 6.1 of Laboratory Manual]				
pparai	us Required:				
ateria]	ls Required :				
	urette :				
C	onical flask :				
Ir	ndicator:				
C	olour change :				
C	hemical Equation :				
ocedu	re:				

Obs	ervation :					
	Burette Reading	I	II	III	IV	Concordant Reading (mL)
	Final Reading (mL)					
	Initial Reading (mL)					
	Difference (mL)					
Calo	culation:		•		•	
(1)	Molar mass of KOH	:				
(2)	Determination of mo	larity of	KOH sol	ution:		
	Potassium hydroxide	Oxa	lic acid			
	$a_1 M_1 V_1 =$	$=$ a_2N	I_2V_2			

where	a ₁ = Acidity of	=	
	M ₁ = Molarity of	_=	
	V ₁ = Volume of	. =	
	a ₂ = Basicity of	. =	
	M ₂ = Molarity of	_=	
	V ₂ = Volume of	_ =	

	:. Molarity of KOH solution = _	M	
(3)	Concentration (strength) of KOH solution	= Molarity × Molar mass	
		=	
		=	g/L

Concentration of KOH solution is _____ g/L

Result:

Sign of subject teacher/Lab teacher

T .	
Date	

	Experiment 4	
Aim :	: Preparation of mL of 0.1M standard solution of sodium carbonate. [Reference: Experiment No. 6.2 of Laboratory Manual]	
Appa	ratus Required :	
Mater	rials Required :	
Calcu	ılation :	
	Standard solution will be prepared according to the experiment procedure by using the requiamount of compound in gram calculated with the help of following formula.	ired
	Weight of compound = $\frac{\text{Molarity} \times \text{Molar mass} \times \text{Volume of solution (mL)}}{1000}$	
	∴ Weight of sodium carbonate =	
Proce	= g edure :	
-		_
-		
-		_
-		

Sign of subject togehen/I ab togehen
Sign of subject teacher/Lab teacher

_	
Doto	
Date	

Aim: To determine the concentration (strength) of given dilute hydrochloric acid solution by titrating it against a solution of 0.1 M sodium carbonate.

_

Obs	ervation :					
	Burette Reading	I	II	III	IV	Concordant Reading (mL)
	Final Reading (mL)	1		1111	1 V	Concordant reading (IIIL)
	Initial Reading (mL)					
	Difference (mL)					
C 1	•					
Carc	culation :					
(1)	Molar mass of HCl	:				
(2)	Determination of mo	larity of	HCl solu	tion:		
	Hydrochloric acid	Sodium	carbona	te		
	$a_1 M_1 V_1 =$	a_2N	I_2V_2			

where	a ₁ = Basicity of	=	
	M ₁ = Molarity of	_=	
	V ₁ = Volume of	_	
	a ₂ = Acidity of	=	
	M ₂ = Molarity of	_=	
	V ₂ = Volume of	_	

	:. Molarity of HCl solution = M	
(3)	Concentration (strength) of HCl solution = Molarity × Molar mass	
	=	
	=	g/L

Result:

Concentration of HCl solution is _____ g/L

Which indicator is used in the titration of sodium carbonate against hydrochloric acid and what is the colour change at the end point ?
How will you prepare 250 mL of 0.05 M solution of sodium carbonate ?
Though sodium carbonate is a salt yet, its aqueous solution is weakly alkaline in nature. Explain why ?
How can you determine the acidity of sodium carbonate solution ?
Why is methyl orange not an Arrhenius base ?
How can you titrate a solution of the mixture of Na ₂ CO ₃ and NaHCO ₃ against HCl?

Can y	ou directly	prepare sta	ndard solut	ion of HCl	, HNO ₃ , and	$d H_2SO_4$?
				S	ign of subjec	ct teacher/Lab t
			•			

D .		
Date	•	
Date		

 \mathbf{Aim} : To determine the concentration (strength) of given dilute nitric acid solution by titrating it against a solution of 0.1 M sodium carbonate.

Appa	[Reference: Experiment No. 6.3 of Laboratory Manual] ratus Required:
Iate	rials Required:
,	Burette:
•	Conical flask :
•	Indicator:
•	Colour change :
•	Chemical Equation:
Proce	edure :

01						
Obs	ervation :					
	Burette Reading	I	II	III	IV	Concordant Reading (mL)
	Final Reading (mL)					
	Initial Reading (mL)					
	Difference (mL)					
Cal	culation:					
(1)	Molar mass of HNO	;				
(2)	Determination of mo	larity of	HNO ₃ so	lution :		
	Nitric acid Sodiu	ım carbo	onate			
	$a_1 M_1 V_1 = a_1 $	$a_2M_2V_2$				
	1 1 1	2 2 2		20		

where	a ₁ = Basicity of	=
	$M_1 = Molarity of$	=
	V ₁ = Volume of	=
	$a_2 = Acidity of $	=
	$M_2 = Molarity of$	
	V ₂ = Volume of	=

	\therefore Molarity of HNO ₃ solution = _		M	
(3)	Concentration (strength) of HNO ₃ solution	=	Molarity × Molar mass	
		=		
		=		g/L
Resu	ılt :			
	Concentration of HNO ₃ solution is		g/L	

Sign of subject teacher/Lab teacher

-		
Date	•	
Date		

Aim:	To determine the pH of some fruit juices.
	[Reference: Experiment No. 5.1 of Laboratory Manual]
Appar	ratus Required:
_	
- Mater	ials Required :
_	
Proced	dure :
-	
_	
_	
_	
_	
_	
_	
_	
_	

Name of the juice Colour with universal indicator pH Colour of pH paper pH Inference (Acidic/Basic/N) Lemon Shows			Juices	different fruit	ues of	pH valu	bservation :
Lemon Shows Orange Shows Apple Shows	TE. T	Infere					Name of the
Orange Shows Apple Shows Pineapple Shows	Neutra	(Acidic/Basic		paper		universal indicator	juice
Apple Shows Pineapple Shows	natur	Shows					Lemon
Pineapple Shows	_ natur	Shows					Orange
	_ natur	Shows					Apple
esult :	natur	Shows					Pineapple
creasing order of pH values of juices is,,,,,,,,		, ,		,	s is	of pH values of juice es of juices)	creasing order

С	Out of four juices, which one is least acidic? Explain.
	we dilute each of the juices, what effect is likely to be observed on the alues?
	on mixing any two juices, would the pH alter or remain the same? Verify your a experimentally?
_	
Н	low can you ascertain the pH of a soft drink?
	Sign of subject teacher/Lab te
	•

D-4-		
Date	•	
Date		

Aim:	To observe the variation in pH of acid/base with dilution.
	[Reference: Experiment No. 5.2 of Laboratory Manual]
Appara	atus Required:
_	
Materi	ials Required :
Proced	lure :
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	

_															
_															
	tion :					M. aha		on dil	ution						
	tion :		HCI		ŗ	oH cha	ınge	on dil		n		Na()H		
eserva	tion :		HCl Univers	al	[H+]	oH cha		on dil H ₂ SO	4	n [H ⁺]	рН Ра	Na(OH Univers	al	ЮН
iling								H ₂ SO	4 sal						ЮН
iling		per	Univers	or			per	H ₂ SO	4 sal	[H ⁺]		per	Univers		[OH
iling be	рН Рај	per	Univers Indicate	or		pH Pa	per	H ₂ SO Univers Indicate	4 sal or	[H ⁺]	pH Pa	per	Univers Indicate	r	
oiling be	рН Рај	per	Univers Indicate	or	[H ⁺]	pH Pa	per	H ₂ SO Univers Indicate	4 sal or	[H ⁺]	pH Pa	per	Univers Indicate	r	
oiling be A B	рН Рај	per	Univers Indicate	or	[H ⁺]	pH Pa	per	H ₂ SO Univers Indicate	4 sal or	[H ⁺]	pH Pa	per	Univers Indicate	r	0.1M
oiling	рН Рај	per	Univers Indicate	or	[H ⁺]	pH Pa	per	H ₂ SO Univers Indicate	4 sal or	[H ⁺]	pH Pa	per	Univers Indicate	r	
oiling be A B	рН Рај	per	Univers Indicate	or	[H ⁺]	pH Pa	per	H ₂ SO Univers Indicate	4 sal or	[H ⁺]	pH Pa	per	Univers Indicate	r	

(2)		centration of OH ⁻ of NaOH solution contained in boiling tubes B, C, and D iseasing /decreasing) respectively.
Con	clusio	n:
(1)		dilution of aqueous solution of acid, the concentration of hydrogen ioneases/decreases) and the pH values (increases/decreases).
(2)		dilution of aqueous solution of base, the concentration of hydroxyl ioneases/decreases) and the pH values (increases/decreases).
•	Ansv	wer the following questions :
	1.	What trend is observed in the variation of pH with dilution for acidic as well as for basic solutions?
	2.	How do you explain the results of variation in pH with dilution ?
	3.	If any two acidic solutions (say A and C) are mixed, what would happen to the pH of the mixture? Verify your answer experimentally.

For each acidic solution, whether we use HCl or H_2SO_4 , pH is same to a reasona good extent, even though HCl is 0.1M, and H_2SO_4 is 0.05M. How do you explain the result?
Testare .
Will the pH of 0.1M acetic acid be the same as that of 0.1M hydrochloric acid? Veryour result and explain it.
Sign of subject teacher/Lab teac

-		
Date	•	
Date		

Aim :	: To study the variation in pH by common ion effect in case of weak acids and weak bases
	[Reference: Experiment No. 5.3 of Laboratory Manual]
Appa	ratus Required:
Matei	rials Required:
Proce	dure :
·	
•	
•	
•	

 Observation		acid/base and its buffer solution	
Sl. No. of test Tube	Composition of the system	Colour of solution changed after adding universal indicator	pН
1.	CH ₃ COOH in water		
2.	NH ₄ OH (NH ₃ in water)		
3.	CH ₃ COOH + CH ₃ COONa		
4.	NH ₄ OH + NH ₄ Cl		
2) pH of lower)	buffer solution of acetic acid and than pH of acetic acid (test tube	est tube 1) is (Write value 3) is 1). st tube 2) is (Write value 3)	(higher
4) pH of	buffer solution of aqueous amm (higher/lower) than pl	nonia solution and ammonium chloride H of ammonia solution (test tube 2).	,
Conclusion:		(increases/decreases) the ionization of a	cid/base
	er the following questions:	(increases) decreases) the foinzation of a	ordi ouse.
(to acetic acid increases the pH whereation (NH ₄ OH) decreases the pH of the ons?	
-			
-			

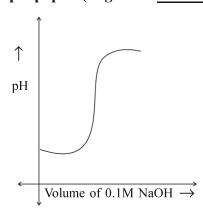
t other pairs of we sent investigations analysis/mixture a out by common	reak acid and s.	d its salt	and wea	ak base an	ad its salt to ca	arr
analysis/mixture a	reak acid and s.	d its salt	and wea	ak base an	ad its salt to ca	arr
analysis/mixture a	reak acid and s.	d its salt	and wea	ak base an	ad its salt to ca	arr
analysis/mixture a out by common	s. analysis, poi					
analysis/mixture a out by common	analysis, poi	nt out the	e situatio	ons where	the variation i	n
out by common		nt out the	e situatio	ons where	the variation i	n r
out by common		nt out the	e situatio	ons where	the variation i	n p
out by common		nt out the	e situatio	ons where	the variation i	n p
o buffer solutions r						
o buffer solutions r						
	resist change	in the pl	H ? Expl	lain with a	suitable examp	le.
		_	α.		ct teacher/Lab	

_	
Date	
Date	

Aim: To study the change in pH during the titration of a strong acid with a strong base by using universal indicator.

[Reference: Experiment No. 5.4 of Laboratory Manual]

ı	reference. Experiment 1(0, 3.1 of Europiatory Wallauf)
Apparat	as Required:
Material	s Required :
Procedui	'e :


Observation:

pH change during the neutralization of 25mL HCl (0.1 M) with NaOH (0.1 M) solution

Sl. No.	Volume of NaOH added (mL)	Total volume of NaOH added to the solution in flask (mL)	pH of solution	Change in pH
1.	0	0		-
2.	12.5	12.5		
3.	10.0	22.5		
4.	2.3	24.8		
5.	0.1	24.9		
6.	0.1	25.0		
7.	0.1	25.1		
8.	0.1	25.2		
9.	0.1	25.3		
10.	0.1	25.4		
11.	0.5	25.9)

Change in pH = (Higher value of pH) - (lower value of pH)

Plot a graph in graph paper (Page No. _____):

Result:

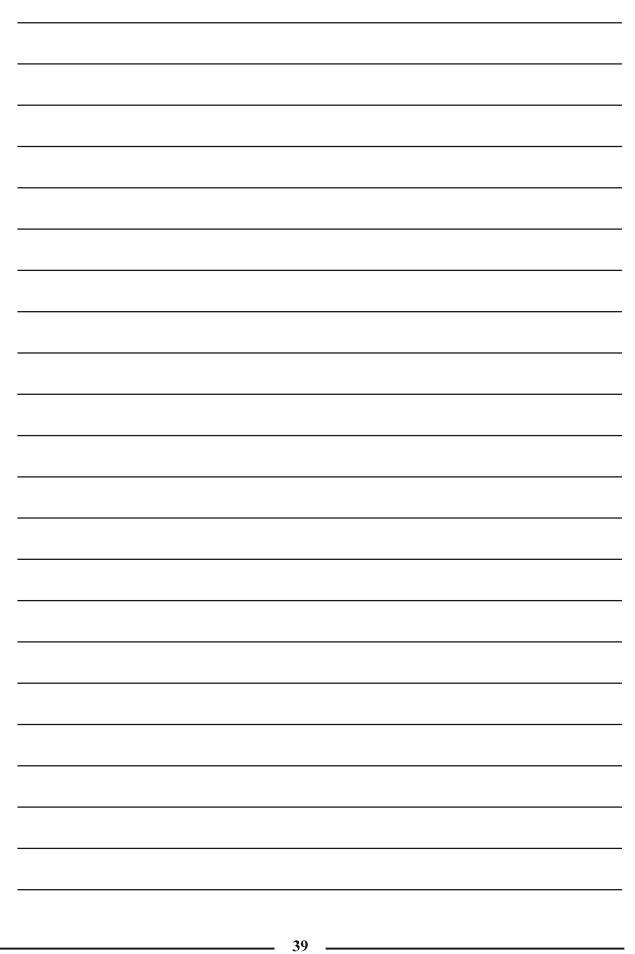
- (i) As 0.1 M NaOH solution is added in 25 mL 0.1 M HCl solution taken in flask, pH of solution _____(increases/decreases)
- (ii) Consequent pH values of total volume of _____ mL and ____ mL NaOH solution give higher value of change in pH. (Write consequent values of volumes from observation table)

Con	clusio	on:
	ask. A	initial stage of titration, pH value of solution is as there is only HCl solution s NaOH solution is added from burette, pH of solution (increases/decreases). ing some volume of NaOH solution, by adding a very little amount (0.1 mL) of NaOH, (very less increase/very high increase/very less decrease/very high
decr	rease)	in pH is observed. At this stage, total volume of NaOH indicate the end point of the titration.
•	Ans	wer the following questions:
	1.	What trend of pH change will you observe in the neutralization of strong acid with strong base ?
	2.	Do you expect the same trend of pH change for neutralization of weak acid (acetic acid) with a strong base (sodium hydroxide) ?
	3.	In which pH range should the indicator show colour change if the hydrochloric acid is to be neutralized by sodium hydroxide? Give answer after looking at the graph of the experiment.
	4.	How does the study of pH change help in choosing the indicator for neutralization reaction. Explain.
		Sign of subject teacher/Lab teacher

D /		
Liate	•	
Date		

Aim: To study pH of solutions of sodium chloride, ferric chloride and sodium carbonate. [Reference: Experiment No. 5.5 of Laboratory Manual] Apparatus Required: Materials Required: **Procedure:**

) Is a	ervation						
DS			can use either pH pa	per or universal indi	cator to measure		
	p	oH of NaCl, FeCl ₃	and Na ₂ CO ₃ solution	s of different conce	entrations		
So	olution	<u> </u>	f solutions (with pH		<u> </u>		
	NaCl	Boiling Tube	Test Tube 1	Test Tube 2	Test Tube 3		
	FeCl ₃ Na ₂ CO ₃						
	$\frac{u_2co_3}{}$						
lesi	alt :						
l)	Aqueo	us solution of NaCl is		(acidic/basic/	neutral)		
2)	Aqueo	us solution of FeCl ₃ is	3	(acidic/basic	/neutral)		
3)	Aqueo	us solution of Na ₂ CO ₂	, is	(acidic/bas	ic/neutral)		
on	clusion :	:					
1)	•	us solution of salt /basic/neutral)	made from strong ac	id and strong base	is		
2)		ous solution of salt made from strong acid and weak base is c/basic/neutral)					
3)	-	us solution of salt /basic/neutral)	made from weak ac	id and strong base	is		


	Why are FeCl ₃ and Na ₂ CO ₃ solutions not neutral ?
	Why are the salts of strong acid and strong base not hydrolysed? Explain.
	How is the phenomenon of hydrolysis useful in salt analysis?
-	
1	What is the effect of dilution on pH of salt solution? Verify and explain your resu
-	
	Sign of subject teacher/Lab teach

-	
Date	
Daic	

Aim: To study the shift in equilibrium in the reaction of ferric ions and thiocyanate ions by increasing the concentration of any one of these ions.

[Reference: Experiment No. 4.1 of Laboratory Manual]

Materials Required:	
Procedure:	

Observation:

Note down the observations due to increase in concentration of ferric ions and thiocyanate ions in following Table 1 and Table 2 respectively.

Table 1: Equilibrium shift on increasing the concentration of ferric ions

Boiling Tube	Volume of ferric chloride solution taken in the system (mL)	Change in colour intensity as matched with reference solution in boiling tube "a"	Direction of shift in equilibrium
a		ching colour containing 2.5 mL mL water (20 mL equilibrium	Equilibrium position
b	1.0		
c	2.0		
d	3.0		
e	4.0		

Table 2: Equilibrium shift on increasing the concentration of thiocyanate ions

Boiling Tube	Volume of thiocyanate solution taken in the system (mL)	Change in colour intensity as matched with reference solution in boiling tube "a"	Direction of shift in equilibrium
a	Reference solution for ma 2.5 mL blood red solution equilibrium mixture)	tching colour containing n + 17.5 mL water (20 mL	Equilibrium position
b′	1.0		
c′	2.0		
ď	3.0		
e′	4.0		

Conclusion:

• Answer the following questions:

1. Explain why representing the ionic reaction between ferric and thiocyanate ions as given below Fe^{3+} (aq) + SCN^- (aq) \Longrightarrow $[Fe(SCN)]^{2+}$ (aq) is more appropriate in the following form ?

 $[Fe(H_2O)_6]^{3+} + SCN^- (aq) \Longrightarrow [Fe(H_2O)_5(SCN)]^{2+} + H_2O$

2. Does the constancy in colour intensity indicate the dynamic nature of equilibrium? Explain your answer with appropriate reasons.

3. What is equilibrium constant and how does it differ from the rate constant?

Why?	advisable to car	ry out the p	present exp	eriment v	vith dilute	soluti
	e the effect of addin answer experimen		sium chlorio	de to the s	ystem at ec	ıuilibri
Why boiling	tubes of same si	ze are used	in the expe	eriment ?		
_						
			Sign	of subject	t teacher/L	ab teac

Date		
Date	•	

Aim : To study the shift in equilibrium in the reaction between $[Co(H_2O)_6]^{2+}$ and Cl^- ions, by changing the concentration of any one of these ions.

[Reference: Experiment No. 4.2 of Laboratory Manual]

	, , ,
Appar	ratus Required:
-	
Mater	rials Required :
Proced	dure :
_	
_	
_	
_	
-	
-	
_	
_	
-	
_	

Observation:

Note down the observations due to increase in amount of water and concentration of Clions in the following Table 1 and Table 2 respectively.

Table 1 : Shift in equilibrium on adding water

Sl. No.	Test tube	Volume of acetone added	Volume of CoCl ₂ solution	Volume of water added	Colour of mixture	Direction of shift in
		(mL)	added (mL)	(mL)		equilibrium
1.	A	1.0	3.0	0.0		
2.	В	0.8	3.0	0.2		
3.	С	0.6	3.0	0.4		
4.	D	0.4	3.0	0.6		
5.	Е	0.2	3.0	0.8		

Table 2 : Shift in equilibrium on adding Cl^- ions

Sl. No.	Test tube	Volume of conc. HCl added (mL)	Volume of aquo complex solution added (mL)	Volume of water added (mL)	Colour of mixture	Direction of shift in equilibrium
1.	A	0.5	1.5	2.0		
2.	B'	1.0	1.5	1.5		
3.	C	1.5	1.5	1.0		
4.	D'	2.0	1.5	0.5		
5.	E'	2.5	1.5	0.0		

Conclusion:

Ans	swer the following questions:
1.	What will be the effect of increasing the temperature of the reaction mixture at equilibrium?
2.	Can an aqueous solution of sodium chloride replace concentrated HCl ? Verify your answer experimentlly.
3.	Why should the total volume of the solution in each test tube be kept same ?

Sign of subject teacher/Lab teacher

D .		
Date	•	
Date		

Aim : To detect the positive and negative ions present in the given salt by qualitative analysis. [Reference: Experiment No. 7.1 of Laboratory Manual]

Apparatus	Required	:			

[A] Dry tests of inorganic salt:

Sl. No.	Test	Observation	Inference
1.	Colour		
2.	Smell		
3.	Heated 0.5 g of salt in a dry test tube		
4.	Flame test		
5.	Borax bead test		
6.	Charcoal cavity test		
7.	Cobalt Nitrate test		

Sl. No.	Test	Observation	Inference
1.	0.1g salt + dilute H_2SO_4 on heating		

2.	$0.1g \text{ salt} + 1 \text{ mL concentrated}$ H_2SO_4 on heating	
3.	Water extract or acidified sodium carbonate extract by dilute HCl + BaCl ₂	
4.	Water extract of salt or sodium carbonate extract + acetic acid (till solution becomes acidic) + lead acetate	
5.	Water extract or sodium carbonate extract + concentrated HNO ₃ + ammonium molybdate	

[C] Confirmatory tests of anion:

Test	Observation	Inference
	Test	Test Observation

[D]	Chemical	equations	of	anion	•
ועו	Chemicai	Cuuanons	VI.	amon	

[E] Group tests for detection of cation :

Preparation of original solution : Original solution (O.S.) = Salt + _____ (Solvent)

Sl. No.	Test	Observation	Inference
1.	Salt + dilute NaOH solution, on heating		Group (0) is
2.	O.S. + dilute HCl		Group (I) is
3.	O.S. + dilute HCl + on passing H ₂ S gas		Group (II) is
4.	O.S. + heated after adding 2 - 3 drops of concentrated HNO ₃ + 0.2 g NH ₄ Cl + add NH ₄ OH solution in excess (till it smells of ammonia)		Group (III) is
5.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH (add till it smells of ammonia) + on passing H ₂ S gas		Group (IV) is
6.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH (add till it smells of ammonia) + 0.5g (NH ₄) ₂ CO ₃		Group (V) is
7.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH(add till it smells of ammonia) + Na ₂ HPO ₄ solution		Group (VI) is

[F] Analysis of group ____ cations :

Sl. No.	Test	Observation	Inference

Sl. No.	Test	Observation	Inference

	cal equations of ca	cation	:
--	---------------------	--------	---

[I] Result table:

Cation of inorganic salt and its name	Anion of inorganic salt and its name	Molecular formula and name of inorganic salt

Sian	ofan	higgs	teache	w/T	ah.	toool	101
Sign	LOT SH	DIECT	Teache	'r/ .	an i	rescr	ıer

D .		
Date	•	
Date		

Aim : To detect the positive and negative ions present in the given salt by qualitative analysis. [Reference: Experiment No. 7.1 of Laboratory Manual]

Apparatus	Required	•			

[A] Dry tests of inorganic salt:

Sl. No.	Test	Observation	Inference
1.	Colour		
2.	Smell		
3.	Heated 0.5 g of salt in a dry test tube		
4.	Flame test		
5.	Borax bead test		
6.	Charcoal cavity test		
7.	Cobalt Nitrate test		

Sl. No.	Test	Observation	Inference
1.	0.1g salt + dilute H_2SO_4 on heating		

2.	$0.1g \text{ salt} + 1 \text{ mL concentrated}$ H_2SO_4 on heating	
3.	Water extract or acidified sodium carbonate extract by dilute HCl + BaCl ₂	
4.	Water extract of salt or sodium carbonate extract + acetic acid (till solution becomes acidic) + lead acetate	
5.	Water extract or sodium carbonate extract + concentrated HNO ₃ + ammonium molybdate	

[C] Confirmatory tests of anion:

Test	Observation	Inference
	Test	Test Observation

[D] Chemical equations of anion:

[E] Group tests for detection of cation :

Preparation of original solution : Original solution (O.S.) = Salt + _____ (Solvent)

Sl. No.	Test	Observation	Inference
1.	Salt + dilute NaOH solution, on heating		Group (0) is
2.	O.S. + dilute HCl		Group (I) is
3.	O.S. + dilute HCl + on passing H ₂ S gas		Group (II) is
4.	O.S. + heated after adding 2 - 3 drops of concentrated HNO ₃ + 0.2 g NH ₄ Cl + add NH ₄ OH solution in excess (till it smells of ammonia)		Group (III) is
5.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH (add till it smells of ammonia) + on passing H ₂ S gas		Group (IV) is
6.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH (add till it smells of ammonia) + 0.5g $(NH_4)_2CO_3$		Group (V) is
7.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH(add till it smells of ammonia) + Na ₂ HPO ₄ solution		Group (VI) is

[F] Analysis of group ____ cations :

Sl. No.	Test	Observation	Inference

[G]	Confirmatory	tests	οf	cation	•
U	Communatory	icoto	UΙ	cation	•

Sl. No.	Test	Observation	Inference

	cal equations of ca	cation	:
--	---------------------	--------	---

[I] Result table:

Cation of inorganic salt and its name	Anion of inorganic salt and its name	Molecular formula and name of inorganic salt

Sign of subject teacher/Lab teacher

D .		
Date	•	
Date	•	

Aim : To detect the positive and negative ions present in the given salt by qualitative analysis. [Reference: Experiment No. 7.1 of Laboratory Manual]

Apparatus	Required	•			

[A] Dry tests of inorganic salt:

Sl. No.	Test	Observation	Inference
1.	Colour		
2.	Smell		
3.	Heated 0.5 g of salt in a dry test tube		
4.	Flame test		
5.	Borax bead test		
6.	Charcoal cavity test		
7.	Cobalt Nitrate test		

Sl. No.	Test	Observation	Inference
1.	0.1g salt + dilute H_2SO_4 on heating		

2.	$0.1g \text{ salt} + 1 \text{ mL concentrated}$ H_2SO_4 on heating	
3.	Water extract or acidified sodium carbonate extract by dilute HCl + BaCl ₂	
4.	Water extract of salt or sodium carbonate extract + acetic acid (till solution becomes acidic) + lead acetate	
5.	Water extract or sodium carbonate extract + concentrated HNO ₃ + ammonium molybdate	

[C] Confirmatory tests of anion:

Test	Observation	Inference
	Test	Test Observation

[D] Chemical equations of anion:

[E] Group tests for detection of cation :

Preparation of original solution : Original solution (O.S.) = Salt + _____ (Solvent)

Sl. No.	Test	Observation	Inference
1.	Salt + dilute NaOH solution, on heating		Group (0) is
2.	O.S. + dilute HCl		Group (I) is
3.	O.S. + dilute HCl + on passing H ₂ S gas		Group (II) is
4.	O.S. + heated after adding 2 - 3 drops of concentrated HNO ₃ + 0.2 g NH ₄ Cl + add NH ₄ OH solution in excess (till it smells of ammonia)		Group (III) is
5.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH (add till it smells of ammonia) + on passing H ₂ S gas		Group (IV) is
6.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH (add till it smells of ammonia) + 0.5g (NH ₄) ₂ CO ₃		Group (V) is
7.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH(add till it smells of ammonia) + Na ₂ HPO ₄ solution		Group (VI) is

[F] Analysis of group ____ cations :

Sl. No.	Test	Observation	Inference

[G]	Confirmatory	tests	\mathbf{of}	cation	:
-----	--------------	-------	---------------	--------	---

Sl. No.	Test	Observation	Inference

[H] Chemical equations of cation	[H]	Chemical	equations	of	cation	
----------------------------------	-----	----------	-----------	----	--------	--

[I] Result table:

Cation of inorganic salt and its name	Anion of inorganic salt and its name	Molecular formula and name of inorganic salt

Sign of subject teacher/Lab teacher

Date	
Date	

Aim : To detect the positive and negative ions present in the given salt by qualitative analysis. [Reference: Experiment No. 7.1 of Laboratory Manual]

Apparatus	Required	:			

[A] Dry tests of inorganic salt:

Sl. No.	Test	Observation	Inference
1.	Colour		
2.	Smell		
3.	Heated 0.5 g of salt in a dry test tube		
4.	Flame test		
5.	Borax bead test		
6.	Charcoal cavity test		
7.	Cobalt Nitrate test		

Sl. No	. Test	Observation	Inference
1.	0.1g salt + dilute H_2SO_4 on heating		

2.	$0.1g \text{ salt} + 1 \text{ mL concentrated}$ H_2SO_4 on heating	
3.	Water extract or acidified sodium carbonate extract by dilute HCl + BaCl ₂	
4.	Water extract of salt or sodium carbonate extract + acetic acid (till solution becomes acidic) + lead acetate	
5.	Water extract or sodium carbonate extract + concentrated HNO ₃ + ammonium molybdate	

[C] Confirmatory tests of anion:

Sl. No.	Test	Observation	Inference

[D] Chemical equations of anion:

[E] Group tests for detection of cation :

Preparation of original solution : Original solution (O.S.) = Salt + _____ (Solvent)

Sl. No.	Test	Observation	Inference
1.	Salt + dilute NaOH solution, on heating		Group (0) is
2.	O.S. + dilute HCl		Group (I) is
3.	O.S. + dilute HCl + on passing H ₂ S gas		Group (II) is
4.	O.S. + heated after adding 2 - 3 drops of concentrated HNO ₃ + 0.2 g NH ₄ Cl + add NH ₄ OH solution in excess (till it smells of ammonia)		Group (III) is
5.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH (add till it smells of ammonia) + on passing H ₂ S gas		Group (IV) is
6.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH (add till it smells of ammonia) + 0.5g $(NH_4)_2CO_3$		Group (V) is
7.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH(add till it smells of ammonia) + Na ₂ HPO ₄ solution		Group (VI) is

[F] Analysis of group ____ cations :

Sl. No.	Test	Observation	Inference

[G]	Confirmatory	tests	οf	cation	•
IVI	Communator y	i Co to	O1	Cation	•

Sl. No.	Test	Observation	Inference
(

	cal equations of ca	cation	:
--	---------------------	--------	---

[I] Result table:

Cation of inorganic salt and its name	Anion of inorganic salt and its name	Molecular formula and name of inorganic salt

Sign of subject teacher/Lab teacher

Data	
Date	

Aim : To detect the positive and negative ions present in the given salt by qualitative analysis. [Reference: Experiment No. 7.1 of Laboratory Manual]

Apparatus	Required	:			

[A] Dry tests of inorganic salt:

Sl. No.	Test	Observation	Inference
1.	Colour		
2.	Smell		
3.	Heated 0.5 g of salt in a dry test tube		
4.	Flame test		
5.	Borax bead test		
6.	Charcoal cavity test		
7.	Cobalt Nitrate test		

Sl. No.	Test	Observation	Inference
1.	0.1g salt + dilute H_2SO_4 on heating		

2.	$0.1g \text{ salt} + 1 \text{ mL concentrated}$ H_2SO_4 on heating	
3.	Water extract or acidified sodium carbonate extract by dilute HCl + BaCl ₂	
4.	Water extract of salt or sodium carbonate extract + acetic acid (till solution becomes acidic) + lead acetate	
5.	Water extract or sodium carbonate extract + concentrated HNO ₃ + ammonium molybdate	

[C] Confirmatory tests of anion:

Sl. No.	Test	Observation	Inference

[D] Chemical equations of anion:

[E] Group tests for detection of cation :

Preparation of original solution : Original solution (O.S.) = Salt + _____ (Solvent)

Sl. No.	Test	Observation	Inference
1.	Salt + dilute NaOH solution, on heating		Group (0) is
2.	O.S. + dilute HCl		Group (I) is
3.	O.S. + dilute HCl + on passing H ₂ S gas		Group (II) is
4.	O.S. + heated after adding 2 - 3 drops of concentrated HNO ₃ + 0.2 g NH ₄ Cl + add NH ₄ OH solution in excess (till it smells of ammonia)		Group (III) is
5.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH (add till it smells of ammonia) + on passing H ₂ S gas		Group (IV) is
6.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH (add till it smells of ammonia) + 0.5g $(NH_4)_2CO_3$		Group (V) is
7.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH(add till it smells of ammonia) + Na ₂ HPO ₄ solution		Group (VI) is

[F] Analysis of group ____ cations :

Sl. No.	Test	Observation	Inference

I	[G]	Confirmatory	tests	ωf	cation	
ı	U	Comminatory	16212	UΙ	cation	•

Sl. No.	Test	Observation	Inference
(

[I] Result table:

Cation of inorganic salt and its name	Anion of inorganic salt and its name	Molecular formula and name of inorganic salt

Sign of subject teacher/Lab teacher

_		
Date	•	
Date		

Aim : To detect the positive and negative ions present in the given salt by qualitative analysis. [Reference: Experiment No. 7.1 of Laboratory Manual]

Apparatus	Required:			

[A] Dry tests of inorganic salt:

Sl. No.	Test	Observation	Inference
1.	Colour		
2.	Smell		
3.	Heated 0.5 g of salt in a dry test tube		
4.	Flame test		
5.	Borax bead test		
6.	Charcoal cavity test		
7.	Cobalt Nitrate test		

Sl. No.	Test	Observation	Inference
1.	$0.1g \text{ salt } + \text{ dilute } \text{H}_2\text{SO}_4$ on heating		

2.	$0.1g \text{ salt} + 1 \text{ mL concentrated}$ H_2SO_4 on heating	
3.	Water extract or acidified sodium carbonate extract by dilute HCl + BaCl ₂	
4.	Water extract of salt or sodium carbonate extract + acetic acid (till solution becomes acidic) + lead acetate	
5.	Water extract or sodium carbonate extract + concentrated HNO ₃ + ammonium molybdate	

[C] Confirmatory tests of anion:

Test	Observation	Inference
	Test	Test Observation

[D] Chemical equations of anion:

[E] Group tests for detection of cation :

Preparation of original solution : Original solution (O.S.) = Salt + _____ (Solvent)

Sl. No.	Test	Observation	Inference
1.	Salt + dilute NaOH solution, on heating		Group (0) is
2.	O.S. + dilute HCl		Group (I) is
3.	O.S. + dilute HCl + on passing H ₂ S gas		Group (II) is
4.	O.S. + heated after adding 2 - 3 drops of concentrated HNO ₃ + 0.2 g NH ₄ Cl + add NH ₄ OH solution in excess (till it smells of ammonia)		Group (III) is
5.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH (add till it smells of ammonia) + on passing H ₂ S gas		Group (IV) is
6.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH (add till it smells of ammonia) + 0.5g (NH ₄) ₂ CO ₃		Group (V) is
7.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH(add till it smells of ammonia) + Na ₂ HPO ₄ solution		Group (VI) is

[F] Analysis of group ____ cations :

Sl. No.	Test	Observation	Inference

[G]	Confirmatory	tests	οf	cation	•
U	Communatory	icoto	UΙ	cation	•

Sl. No.	Test	Observation	Inference

	cal equations of ca	cation	:
--	---------------------	--------	---

[I] Result table:

Cation of inorganic salt and its name	Anion of inorganic salt and its name	Molecular formula and name of inorganic salt

Sign of subject teacher/Lab teacher

Date	

Aim : To detect the positive and negative ions present in the given salt by qualitative analysis. [Reference: Experiment No. 7.1 of Laboratory Manual]

Apparatu	s Required	:			

[A] Dry tests of inorganic salt:

Sl. No.	Test	Observation	Inference
1.	Colour		
2.	Smell		
3.	Heated 0.5 g of salt in a dry test tube		
4.	Flame test		
5.	Borax bead test		
6.	Charcoal cavity test		
7.	Cobalt Nitrate test		

[B] Tests for detection of anion:

Sl. No.	Test	Observation	Inference
1.	0.1g salt + dilute H_2SO_4 on heating		

2.	$0.1g \text{ salt} + 1 \text{ mL concentrated}$ H_2SO_4 on heating	
3.	Water extract or acidified sodium carbonate extract by dilute HCl + BaCl ₂	
4.	Water extract of salt or sodium carbonate extract + acetic acid (till solution becomes acidic) + lead acetate	
5.	Water extract or sodium carbonate extract + concentrated HNO ₃ + ammonium molybdate	

[C] Confirmatory tests of anion:

Sl. No.	Test	Observation	Inference

[D] Chemical equations of anion:

[E] Group tests for detection of cation :

Preparation of original solution : Original solution (O.S.) = Salt + _____ (Solvent)

Sl. No.	Test	Observation	Inference
1.	Salt + dilute NaOH solution, on heating		Group (0) is
2.	O.S. + dilute HCl		Group (I) is
3.	O.S. + dilute HCl + on passing H ₂ S gas		Group (II) is
4.	O.S. + heated after adding 2 - 3 drops of concentrated HNO ₃ + 0.2 g NH ₄ Cl + add NH ₄ OH solution in excess (till it smells of ammonia)		Group (III) is
5.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH (add till it smells of ammonia) + on passing H ₂ S gas		Group (IV) is
6.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH (add till it smells of ammonia) + 0.5g $(NH_4)_2CO_3$		Group (V) is
7.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH(add till it smells of ammonia) + Na ₂ HPO ₄ solution		Group (VI) is

[F] Analysis of group ____ cations :

Inference	Observation	Test	Sl. No.

I	[G]	Confirmatory	tests	ωf	cation	
ı	U	Comminatory	16212	UΙ	cation	•

Sl. No.	Test	Observation	Inference

	cal equations of ca	cation	:
--	---------------------	--------	---

[I] Result table:

Cation of inorganic salt and its name	Anion of inorganic salt and its name	Molecular formula and name of inorganic salt

Sian	ofan	higgs	teache	w/T	ah.	toool	101
Sign	LOT SH	DIECT	Teache	'r/ .	an i	rescr	ıer

Date		1	1
Date			

Aim : To detect the positive and negative ions present in the given salt by qualitative analysis. [Reference: Experiment No. 7.1 of Laboratory Manual]

Apparatus	Required	•			

[A] Dry tests of inorganic salt:

Sl. No.	Test	Observation	Inference
1.	Colour		
2.	Smell		
3.	Heated 0.5 g of salt in a dry test tube		
4.	Flame test		
5.	Borax bead test		
6.	Charcoal cavity test		
7.	Cobalt Nitrate test		

[B] Tests for detection of anion:

Sl. No.	Test	Observation	Inference
1.	$0.1g \text{ salt } + \text{ dilute } \text{H}_2\text{SO}_4$ on heating		

2.	$0.1g \text{ salt} + 1 \text{ mL concentrated}$ H_2SO_4 on heating	
3.	Water extract or acidified sodium carbonate extract by dilute HCl + BaCl ₂	
4.	Water extract of salt or sodium carbonate extract + acetic acid (till solution becomes acidic) + lead acetate	
5.	Water extract or sodium carbonate extract + concentrated HNO ₃ + ammonium molybdate	

[C] Confirmatory tests of anion:

Sl. No.	Test	Observation	Inference

[D] Chemical equations of anion:

[E] Group tests for detection of cation :

Preparation of original solution : Original solution (O.S.) = Salt + _____ (Solvent)

Sl. No.	Test	Observation	Inference
1.	Salt + dilute NaOH solution, on heating		Group (0) is
2.	O.S. + dilute HCl		Group (I) is
3.	O.S. + dilute HCl + on passing H ₂ S gas		Group (II) is
4.	O.S. + heated after adding 2 - 3 drops of concentrated HNO ₃ + 0.2 g NH ₄ Cl + add NH ₄ OH solution in excess (till it smells of ammonia)		Group (III) is
5.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH (add till it smells of ammonia) + on passing H ₂ S gas		Group (IV) is
6.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH (add till it smells of ammonia) + 0.5g $(NH_4)_2CO_3$		Group (V) is
7.	O.S. + 0.2g NH ₄ Cl + NH ₄ OH(add till it smells of ammonia) + Na ₂ HPO ₄ solution		Group (VI) is

[F] Analysis of group ____ cations :

Sl. No.	Test	Observation	Inference

[G]	Confirmatory	tests	οf	cation	•
U	Communatory	icoto	UΙ	cation	•

Sl. No.	Test	Observation	Inference

[H] Chemical equations of cat	tion :	1 :
-------------------------------	--------	-----

[I] Result table:

Cation of inorganic salt and its name	Anion of inorganic salt and its name	Molecular formula and name of inorganic salt

Why is platinum metal preferred to other metals for the flame test? Name the anions detected with the help of dilute H_2SO_4 Why is dilute H_2SO_4 preferred over dilute HCl while testing anions? Name the anions detected by conc. H_2SO_4 .	What is the difference between a qualitative and a quantitative analysis?
Why is platinum metal preferred to other metals for the flame test? Name the anions detected with the help of dilute H_2SO_4 Why is dilute H_2SO_4 preferred over dilute HCl while testing anions? Name the anions detected by conc. H_2SO_4 .	
Name the anions detected with the help of dilute H_2SO_4 Why is dilute H_2SO_4 preferred over dilute HCl while testing anions? Name the anions detected by conc. H_2SO_4 .	Can we use glass rod instead of platinum wire for performing the flame test? Explayour answer.
Why is dilute H_2SO_4 preferred over dilute HCl while testing anions? Name the anions detected by conc. H_2SO_4 .	Why is platinum metal preferred to other metals for the flame test?
Name the anions detected by conc. H_2SO_4 .	Name the anions detected with the help of dilute H_2SO_4
	Why is dilute H_2SO_4 preferred over dilute HCl while testing anions?
	Name the anions detected by conc. H_2SO_4 .
How is sodium carbonate extract prepared?	How is sodium carbonate extract prepared ?

	arbon dioxide gas and sulphur dioxide gas both turn lime water milky. How will stinguish between the two?
_	
H _	ow will you test the presence of carbonate ion?
	That is the composition of dark brown ring which is formed at the junction of two lagest the ring test for nitrates?
_ N	ame the radical confirmed by sodium nitroprusside test.
- W	That is chromyl chloride test? How do you justify that CrO_2Cl_2 is acidic in nature?
_	

Describe the layer test for bromide and iodide ions.	
Why is silver nitrate solution stored in dark coloured bottles?	
How do you test the presence of sulphide ion?	
Why does iodine give a blue colour with starch solution?	
What is Nessler's reagent ?	
Why is original solution for cations not prepared in conc. HNO ₃ or conc. H ₂ SO ₄ ?	
Why cannot conc. HCl be used as a group reagent in place of dil. HCl for the precipitati	—
of first group cations?	
How can one prevent the precipitation of Group–IV radicals with the Group-II radicals	s :
80	

23.	Why is it essential to boil off H ₂ S gas before precipitation of radicals of group–III?
24.	Why is heating with conc. nitric acid done before precipitation of group–III?
25.	Can we use ammonium sulphate instead of ammonium chloride in group–III ?
26.	Why is NH_4OH added before $(NH_4)_2CO_3$ solution while precipitating group—V cations?
27.	Why do we sometimes get a white precipitate in group–VI even if the salt does not contain Mg ²⁺ radical?
28.	What is aqua regia ?
29.	Name a cation, which is not obtained from a metal.
30.	How can you test the presence of ammonium ion?

•	Why are the group–V radicals tested in the order Ba ²⁺ , Sr ²⁺ and Ca ²⁺ ?
-	Why does conc. HNO ₃ kept in a bottle turn yellow in colour?
	Why should the solution be concentrated before proceeding to group—V?
	Why is the reagent bottle containing sodium hydroxide solution never stoppered?
	What do you understand by the term common ion effect ?
	Why is zinc sulphide not precipitated in group—II?
	Sign of subject teacher/Lab teacher

T		
I late	•	
Daic		

Aim:	To purify compound by crystallization.
	[Reference: Experiment No. 3.1 of Laboratory Manual]
Appar	ratus Required:
_	
_	
Mater	ials Required:
Name	of compound taken as sample :
- Proced	dure :
_	
_	
_	
_	
_	
_	

Obs	ervation:
(1)	Do you observe difference in external appearance of the compound before and after crystallization?(yes / No)
(2)	Colour of crystals:
(3)	Size and shape of crystals:
(4)	Do the obtained crystals exhibit luster? (yes / No)
(5)	Draw the figure of obtained crystals in given circle as per your observations.
	Obtained Crystals

Result:

• Answer the following questions:

- 1. Which of the following formula is correct representation of potash alum (phitkari)? Explain.
 - (a) $K^+(H_2O)_6Al^{3+}(H_2O)_6(SO_4^{2-})_2$
 - (b) $K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O$
- 2. What are isomorphous compounds?
- 3. What is meant by the term, 'water of crystallisation'?

- 4. Describe the effect of strong heating on each type of crystal prepared by you.
- 5. What do you understand by the term 'mother liquor'?

6.	Which thermodynamic function favours the process of crystallization?
7.	Explain the term – saturated solution.
8.	Why is the preparation of saturated solution essential for making crystals?
9.	Name the processes involved in crystallization.
10.	What is Kipp's waste? How can we obtain crystals of ferrous sulphate from Kipp's waste?
	Sign of subject teacher/Lab teacher

Date		1	/
Daic			

Aim		
	[Reference: Experiment No. 3.2 of Laboratory Manual]	
App	nratus Required:	
		_
Mat	rials Required :	_
Nam	e of compound taken as sample :	_
Proc	edure :	_
	(Note: Different apparatuses are used for determination of melting point. Out of them, u of beaker is easier method to determine melting point. Arrangement of apparatus and mater for experiment is made according to beaker containing method given in Figure 3.1 (b) Laboratory Manual)	ial
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_

Observation: Mercury level in thermometer when compound of capillary tube melts =°C			ratus and material	
Mercury level in thermometer when compound of capillary tube melts = °C Result: Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?				
Mercury level in thermometer when compound of capillary tube melts = °C Result: Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?				
Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?				
Mercury level in thermometer when compound of capillary tube melts = °C Result: Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?				
Mercury level in thermometer when compound of capillary tube melts = °C Result: Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?				
Mercury level in thermometer when compound of capillary tube melts = °C Result: Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?				
Mercury level in thermometer when compound of capillary tube melts = °C Result: Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?				
Mercury level in thermometer when compound of capillary tube melts = °C Result: Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?				
Mercury level in thermometer when compound of capillary tube melts = °C Result: Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?				
Mercury level in thermometer when compound of capillary tube melts = °C Result: Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?				
Mercury level in thermometer when compound of capillary tube melts = °C Result: Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?				
Mercury level in thermometer when compound of capillary tube melts = °C Result: Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?				
Mercury level in thermometer when compound of capillary tube melts = °C Result: Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?				
Mercury level in thermometer when compound of capillary tube melts = °C Result: Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?				
Mercury level in thermometer when compound of capillary tube melts = °C Result: Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?				
Mercury level in thermometer when compound of capillary tube melts = °C Result: Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?				
Mercury level in thermometer when compound of capillary tube melts = °C Result: Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?				
Mercury level in thermometer when compound of capillary tube melts = °C Result: Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?				
Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?	Obs	ervati	on:	
Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?		Merc	cury level in thermometer when comr	pound of capillary tube melts = °C
Melting point of given solid organic compound is °C. • Answer the following questions: 1. Why do pure solids possess sharp melting point?	Dog		, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11	
• Answer the following questions: 1. Why do pure solids possess sharp melting point?	IXES			1.
1. Why do pure solids possess sharp melting point?		Melt	ing point of given solid organic comp	oound isoC.
	•	Ansv	ver the following questions:	
		1.	Why do pure solids possess sharp m	nelting point ?
88				
				88

Can we heat the capillary directly for the determination of melting point ?	Why is the melting point of benzamide more t	
Why is liquid paraffin filled in the Thiele's tube/Kjeldahl's flask?		han acetamide ?
Can we heat the capillary directly for the determination of melting point? Why is liquid paraffin filled in the Thiele's tube/Kjeldahl's flask?		
Why is liquid paraffin filled in the Thiele's tube/Kjeldahl's flask?	Can any other liquid be used in place of liquid	I paraffin to determine the melting po
	Can we heat the capillary directly for the deter	rmination of melting point?
Why is Thiele's tube heated at the side arm?	Why is liquid paraffin filled in the Thiele's tul	oe/Kjeldahl's flask ?
	Why is Thiele's tube heated at the side arm?	

_		
Date	•	
Daic		

Aim	: Determination of boiling point of a liquid organic compound.
	[Reference: Experiment No. 3.3 of Laboratory Manual]
App	aratus Required :
Mat	erials Required:
Nam	ne of compound taken as sample :
Proc	redure :
	(Note: Different apparatuses are used for determination of boiling point. Out of them, use of beaker is easier method to determine boiling point. Arrangement of apparatus and material for experiment is made according to beaker containing method instead of ignition tube given in Figure 3.2 of Laboratory Manual)

Draw figure of arrangement of apparatus and material	
apparatus and material	
Observation:	
Mercury level in thermometer when but dipped in the liquid organic compound co	obbles start vigorusly at the lower end of the capillary ontinuously = °C.
	91

Suggest a suitable liquid, which can be filled in the Thiele's tube for the determination of the boiling point of carbon tetrachloride.
In place of liquid paraffine, can any other liquid be used for the purpose of determination of boiling point ?
Suppose boiling point of a liquid in Delhi is 100°C. At hill station, will it be the same or different? Give reasons.
Why is food cooked more quickly in a pressure cooker ?
How would the boiling point of water vary with the addition of equimolar quantities of urea, potassium chloride and potassium sulphate?
Why do different isomers of alcohol represented by the formula $C_4H_{10}O$ differ in their boiling points ?
Sign of subject teacher/Lab teacher

Result:

		+++
	Experiment No. :	
	Experiment No	
	Date :	
		+
	Scale	
	X-axis =	
	**	\blacksquare
	Y-axis =	##
		#
		#
		\blacksquare
		#
		\blacksquare
		\blacksquare
		\blacksquare
		\blacksquare
		₩
		▦
		\blacksquare
		₩
		▦
		\blacksquare
	<u> </u>	####

				#
				Ħ
				Ħ
		Experiment No. :		\blacksquare
		Date :	•••••	
		Scale		
		Scale		\parallel
		X-axis =		Ħ
				Ħ
		Y-axis =	•••••	Ħ
				Ħ
				\blacksquare
				\parallel
				Ħ
				Ħ
				▦
				\blacksquare
				Ħ
				Ħ
				#
				#
				#
				∄
				Ħ
				Ħ
				Ħ
				\blacksquare
				\sharp
				∄
				\parallel
				Ħ
				Ħ
				Ħ
				\blacksquare
				\sharp
				#
				#
				#
				\blacksquare
				#
				\blacksquare
				Ħ
				\parallel
				#
			++8++++8+++8+++8+++8+++8+++	ш
				#
				\blacksquare
				#
				#
				100

Logarithms

Table 1

10 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374 5 9 13 17 21 26 30 34 38 11 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755 4 8 12 16 20 23 24 28 32 33 12 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106 3 7 11 15 18 82 22 20 23 31 13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430 3 6 10 13 16 19 23 26 29 14 1461 1492 1523 1553 1584 1614 1614 1614 1673 1703 1732 3 6 9 12 15 17 22 25 28 15 1791 1790 1818 1847 1875 1903 1931 1959 1987 2014 3 6 9 11 14 17 17 20 23 26 15 1791 1790 1818 1847 1875 1903 1931 1959 1987 2014 3 6 9 11 14 17 17 19 22 25 16 2041 2068 2098 2122 2148 2175 2201 2227 2253 2279 3 6 8 11 14 17 19 22 25 17 2304 2330 2365 2380 2405 2430 2455 2480 2504 2529 3 5 8 10 13 16 18 21 23 18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765 2 4 7 9 11 14 17 19 22 24 24 24 24 24 24 2	N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
11	10	0000	0043	0086	0128	0170			0294	0334	0374				ı				34	38
12												-			-			-		
12	11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	l			ı					
13				0054					1000	40		_			\vdash			-		_
13	12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106				ı					
14	- 10	4420	4450	1206	1220	1051	1000	400.5	10.5	1200	4.420	_			_			_		
14	13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430				ı					
15	1.1	1.161	1.400	1.500	1550	1504	1614	1614	1.650	1502	1500							-		
15	14	1461	1492	1523	1553	1584	1614	1614	16/3	1/03	1/32				ı					
16	1.5	1701	1700	1010	1047	1075	1002	1021	1050	1007	2014	-			_			-		
The color The	13	1/91	1/90	1818	1847	18/3	1903	1931	1939	1987	2014				ı					
17	16	2041	2069	2008	2122	2140	2175	2201	2227	2252	2270	-			_			_		_
The color of the	10	2041	2008	2098	2122	2148	21/3	2201	2221	2233	2219				ı					
18	17	2204	2220	2265	2280	2405	2420	2455	2490	2504	2520	_			 			_		_
18	1 /	2304	2330	2303	2360	2403	2430	2433	2460	2304	2329				l '					
19	10	2553	2577	2601	2625	2648	2672	2605	2718	2742	2765	_			-			-		
19	10	2333	2311	2001	2023	2046	2072	2093	2/10	2/42	2703				1					
20	10	2788	2810	2833	2856	2878	2000	2023	20/15	2067	2080	-			-			-		
20	17	2700	2010	2033	2030	2070	2,000	2723	2743	2,007	2767									
21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404 2	20	3010	3032	3054	3075	3096	3118	3130	3160	3181	3201				_					
22								l							ı					
23 3617 3636 3655 3675 3692 3711 3729 3747 3766 3784 2 4 6 7 9 11 13 15 17 24 3802 3828 3856 3874 3892 3999 3997 3994 3962 2 4 5 7 9 11 12 14 16 25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133 2 3 5 7 9 10 12 14 15 26 4150 4166 4182 4200 4216 4232 4299 4264 4330 4340 4425 4440 4456 2 3 5 6 8 9 11 13 14 29 4624 4639 4681 4829 4843 4857 4879 4594 4956 2 3															ı					
25		3617		3655	3675		ı	3729					4		ı	9	11	13		
26 4150 4166 4182 4200 4216 4232 4279 4265 4281 4298 2 3 5 7 8 10 11 13 15 27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456 2 3 5 6 8 9 11 13 14 28 4472 4487 4502 4518 4533 1548 4564 4579 4594 4609 2 3 5 6 8 9 11 13 14 29 4624 4639 4664 4669 4683 4698 4713 4728 4742 4757 1 3 4 6 7 9 10 12 13 30 4771 4786 4800 4843 4857 4811 5900 1 3 4 6 7 9 10 11 13 31 4914 4928 4942 4955 5969	24	3802		3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12		16
27								l							ı					
28 4472 4487 4502 4518 4533 1548 4564 4579 4594 4609 2 3 5 6 8 9 11 12 14 29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757 1 3 4 6 7 9 10 12 13 30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 1 3 4 6 7 9 10 11 13 31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 1 3 4 6 7 8 9 11 12 33 5185 5198 5211 5224 5238 5250 5263 5276 5289 5302 1 3 4 5 6 8 9 10 11 35 5441 5453								l							ı					
29								l		l					ı					
30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 1 3 4 6 7 9 10 11 13 31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 1 3 4 6 7 8 10 11 12 32 5051 5065 5079 5092 5105 5119 5132 5142 5159 5172 1 3 4 5 7 8 9 11 12 33 5185 5198 5211 5224 5238 5250 5263 5276 5289 5302 1 3 4 5 6 8 9 10 12 34 5315 5328 5340 5353 3366 5378 5391 5403 5416 5428 1 3 4								l		l		l			ı					
31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 1 3 4 6 7 8 10 11 12 32 5051 5065 5079 5092 5105 5119 5132 5142 5159 5172 1 3 4 5 7 8 9 11 12 33 5185 5198 5211 5224 5238 5250 5263 5276 5289 5302 1 3 4 5 6 8 9 10 12 34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428 1 3 4 5 6 8 9 10 11 35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 1 2 4 5 6 7 9 10 11 36 5563 5575															"					
32 5051 5065 5079 5092 5105 5119 5132 5142 5159 5172 1 3 4 5 7 8 9 11 12 33 5185 5198 5211 5224 5238 5250 5263 5276 5289 5302 1 3 4 5 6 8 9 10 12 34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428 1 3 4 5 6 8 9 10 11 35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 1 2 4 5 6 7 9 10 11 36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 1 2 4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>l</td><td></td><td></td><td></td><td>l .</td><td></td><td></td><td>ı</td><td></td><td></td><td></td><td></td><td></td></t<>								l				l .			ı					
33 5185 5198 5211 5224 5238 5250 5263 5276 5289 5302 1 3 4 5 6 8 9 10 12 34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428 1 3 4 5 6 8 9 10 11 35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 1 2 4 5 6 7 9 10 11 36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 1 2 4 5 6 7 8 10 11 37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 1 2 3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>l</td><td></td><td></td><td></td><td>l</td><td></td><td></td><td>ı</td><td></td><td></td><td></td><td></td><td></td></t<>								l				l			ı					
34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428 1 3 4 5 6 8 9 10 11 35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 1 2 4 5 6 7 9 10 11 36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 1 2 4 5 6 7 8 10 11 37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 1 2 3 5 6 7 8 9 10 38 5798 5809 5821 532 5843 5855 5866 5877 5888 5899 1 2 3												l			ı					
35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 1 2 4 5 6 7 9 10 11 36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 1 2 4 5 6 7 8 10 11 37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 1 2 3 5 6 7 8 9 10 38 5798 5809 5821 532 5843 5855 5866 5877 5888 5899 1 2 3 5 6 7 8 9 10 40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 1 2 3 4							ı					l								
36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 1 2 4 5 6 7 8 10 11 37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 1 2 3 5 6 7 8 9 10 38 5798 5809 5821 532 5843 5855 5866 5877 5888 5899 1 2 3 5 6 7 8 9 10 39 5911 5922 5933 5944 5922 5966 5977 5988 5999 6010 1 2 3 4 5 7 8 9 10 40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 1 2 3 4 5 6 8 9 10 41 6128 6138 61																				
37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 1 2 3 5 6 7 8 9 10 38 5798 5809 5821 532 5843 5855 5866 5877 5888 5899 1 2 3 5 6 7 8 9 10 39 5911 5922 5933 5944 5922 5966 5977 5988 5999 6010 1 2 3 4 5 7 8 9 10 40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 1 2 3 4 5 6 8 9 10 41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 1 2 3 4 </td <td></td> <td> I 1</td> <td></td> <td></td> <td>l</td> <td>-</td> <td></td> <td> ′</td> <td></td> <td></td>												I 1			l	-		′		
38 5798 5809 5821 532 5843 5855 5866 5877 5888 5899 1 2 3 5 6 7 8 9 10 40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 1 2 3 4 5 7 8 9 10 40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 1 2 3 4 5 6 8 9 10 41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 1 2 3 4 5 6 8 9 10 42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 1 2 3 4 5 6 7 8 9 43 6335 6345 6355								l		l		1 1			ı					
39 5911 5922 5933 5944 5922 5966 5977 5988 5999 6010 1 2 3 4 5 7 8 9 10 40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 1 2 3 4 5 6 8 9 10 41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 1 2 3 4 5 6 8 9 10 42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 1 2 3 4 5 6 7 8 9 43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 1 2 3 4 </td <td></td> <td>Ι.</td> <td></td> <td></td> <td>ı</td> <td></td> <td></td> <td></td> <td></td> <td></td>												Ι.			ı					
41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 1 2 3 4 5 6 7 8 9 42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 1 2 3 4 5 6 7 8 9 43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 1 2 3 4 5 6 7 8 9 44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 1 2 3 4 5 6 7 8 9 45 6235 6542 6551 6561 6571 6580 6590 6599 6609 6618 1 2 3 4 5 6 7 8 9 45 6628 6637 6646 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ı</td> <td></td> <td></td> <td></td> <td></td> <td>Ι.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							ı					Ι.								
41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 1 2 3 4 5 6 7 8 9 42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 1 2 3 4 5 6 7 8 9 43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 1 2 3 4 5 6 7 8 9 44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 1 2 3 4 5 6 7 8 9 45 6235 6542 6551 6561 6571 6580 6590 6599 6609 6618 1 2 3 4 5 6 7 8 9 45 6628 6637 6646 <td></td> <td>6021</td> <td>6021</td> <td>6042</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6107</td> <td></td> <td>1</td> <td>2</td> <td>2</td> <td> 4</td> <td>5</td> <td>6</td> <td>0</td> <td>0</td> <td>10</td>		6021	6021	6042						6107		1	2	2	4	5	6	0	0	10
42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 1 2 3 4 5 6 7 8 9 43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 1 2 3 4 5 6 7 8 9 44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 1 2 3 4 5 6 7 8 9 45 6235 6542 6551 6561 6571 6580 6590 6599 6609 6618 1 2 3 4 5 6 7 8 9 45 6235 6542 6551 6561 6571 6580 6590 6599 6609 6618 1 2 3 4 5 6 7 8 9 46 6628 6637 6646 <td></td> <td>l .</td> <td></td> <td></td> <td>Ι.</td> <td></td> <td>_</td> <td></td> <td></td> <td></td>												l .			Ι.		_			
43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 1 2 3 4 5 6 7 8 9 44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 1 2 3 4 5 6 7 8 9 45 6235 6542 6551 6561 6571 6580 6590 6599 6609 6618 1 2 3 4 5 6 7 8 9 46 6628 6637 6646 6656 6665 6665 66675 6684 6693 6702 6712 1 2 3 4 5 6 7 8 9 47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 1 2 3 4 5 5 6 7 8 48 6812 6821 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>l</td> <td></td> <td></td> <td></td> <td>l .</td> <td></td> <td></td> <td>Ι.</td> <td></td> <td></td> <td></td> <td></td> <td></td>								l				l .			Ι.					
44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 1 2 3 4 5 6 7 8 9 45 6235 6542 6551 6561 6571 6580 6590 6599 6609 6618 1 2 3 4 5 6 7 8 9 46 6628 6637 6646 6656 6665 6665 66675 6684 6693 6702 6712 1 2 3 4 5 6 7 7 8 47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 1 2 3 4 5 5 6 7 8 48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 1 2 3 4 5 6 7 8												Ι.								9
46 6628 6637 6646 6656 6665 6665 6665 66675 6684 6693 6702 6712 1 2 3 4 5 6 7 7 8 47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 1 2 3 4 5 5 6 7 8 48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 1 2 3 4 4 5 6 7 8	44			6454				6493	6503	6513		1			4		6	7		9
46 6628 6637 6646 6656 6665 6665 6665 66675 6684 6693 6702 6712 1 2 3 4 5 6 7 7 8 47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 1 2 3 4 5 5 6 7 8 48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 1 2 3 4 4 5 6 7 8	45	6235	6542	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3	4	5	6	7	8	9
47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 1 2 3 4 5 5 6 7 8 48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 1 2 3 4 4 5 6 7 8												l .			l .					
48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 1 2 3 4 4 5 6 7 8												l			Ι.					
49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981 1 2 3 4 4 5 6 7 8	48			6830			6857					1		3	4	4	5	6		8
	49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	8

Logarithms

Table 1

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4	5	6	7	8
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7	7
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	1	2	2	3	4	5	6	6	7
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7
55	7404	7412	7419	7127	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
56	7482	7490	7497	7505	7513	7530	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1	1	2	3	4	4	5	6	6
61	7853	7860	7768	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4	4	5	6	6
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	6	6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	1	2	3	3	4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	1	2	3	3	4	5	5	6
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	1	1	2	3	3	4	5	5	6
68	8325	8331	8338	8344	8351	8357	8367	8370	8376	8382	1	1	2	3	3	4	4	5	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	1	2	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	1	2	2	3	4	4	5	5
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	1	1	2	2	3	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	2	4	5	6
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	2	3	3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	3	3	4	4	5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9267	9274	9279	9284	9289	1	1	2	2	3	3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2	3	3	4	4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	1	2	2	3	3	4	4
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	0	1	1	2	2	3	3	4	4
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	0	1	1	2	2	3	3	4	4
99	9956	9961	9965	9969	9974	9978	9983	9987	9997	9996	0	1	1	2	2	3	3	3	4

Antilogarithms

Table 2

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
.00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	0	1	1	1	1	2	2	2
.01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	1	2	2	2
.02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	0	0	1	1	1	1	2	2	2
.03	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	2
.04	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	1	1	2	2	2	2
.05	1122	1125	1127	1130	1132	1135	1138	1140	1143	1146	0	1	1	1	1	2	2	2	2
.06	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	0	1	1	1	1	2	2	2	2
.07	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	1	1	1	1	2	2	2	2
.08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	1	1	1	1	2	2	2	3
.09	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	0	1	1	1	1	2	2	2	3
10	1250	1262	1265	1260	1271	1274	1276	1270	1202	1205	_	1	1	1	1	2	١,	2	,
.10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	1	1	1	1	2	2	2	3
1.11	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	1	1	2	2	2	2	3
.12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	l -	1	-	1	2	2	2	2	3
.13	1349 1380	1352 1384	1355 1387	1358 1390	1361 1393	1365 1396	1368 1400	1371 1403	1374 1406	1377 1409	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1 1	1	1 1	2 2	2 2	2 2	3	3 3
.15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	1	1		2	2	$\frac{2}{2}$	3	3
	1445	1449	1419	1422	1459	1462	1466	1469	1472	1479	0	1	1	1	2	2		3	
.16	1443	1449	1432	1489	1493	1496	1500	1503	1507	1510	0	1	1	1		2	2 2	3	3
.18	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	0	1	1		2 2	2	$\frac{2}{2}$	3	3
.19	1549	1517	1556	1560	1563	1567	1570	1574	1578	1581		1	1	1 1	2	2	3	3	3
1.19	1349	1332	1330	1300	1303	1307	1370	13/4	1378	1361	"	1	1	1	2	2)	3	3
.20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2	2	3	3	3
.21	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	0	1	1	2	2	2	3	3	3
.22	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	0	1	1	2	2	2	3	3	3
.23	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	1	1	2	2	2	3	3	4
.24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	0	1	1	2	2	2	3	3	4
.25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2	3	3	4
.26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	0	1	1	2	2	3	3	3	4
.27	1862	1866	1871	1875	1879	1884	1888	1892	1897	1901	0	1	1	2	2	3	3	3	4
.28	1905	1910	1914	1919	1923	1928	1932	1936	1941	1945	0	1	1	2	2	3	3	4	4
.29	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	0	1	1	2	2	3	3	4	4
.30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	4	4
.31	2042	2046	2051	2056	2014	2065	2070	2075	2080	2084	0	1	1	2	2	3	3	4	4
.32	2042	2040	2099	2104	2109	2113	2118	2123	2128	2133		1	1	2	2	3	3	4	4
.33	2138	2143	2148	2153	2158	2163	2168	2173	2178	2183		1	1	2	2	3	3	4	4
.34	2188	2193	2198	2203	2208	2213	2218	2223	2228	2234	1	1	2	2	3	3	4	4	5
.35		2244	2249	2254	2259	2265	2270	275	2280	2286	1	1	2	2	3	3	4	4	5
.36		2296	2301	2307	2312	2317	2323	2328	2333	2339	1	1	2	2	3	3	4	4	5
.37	2344	2350	2355	2360	2366	2371	2377	2382	2388	2393	1	1	2	2	3	3	4	4	5
.38	2399	2404	2410	2415	2421	2427	2432	2438	2443	2449	1	1	2	2	3	3	4	4	5
.39	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	3	3	4	5	5
.57	2.55	2.00	2.00		- · · ·	2.05	2.03	[.,,,	2500	2500	1	•	_	_		5	l		
.40	2512	2518	2523	2529	2535	2541	2547	2553	2559	2564	1	1	2	2	3	4	4	5	5
.41	2570	2576	2582	2588	2594	2600	2606	2612	2618	2624	1	1	2	2	3	4	4	5	5
.42	2630	2636	2642	2649	2655	2661	2667	2673	2679	2685	1	1	2	2	3	4	4	5	6
.43	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	1	1	2	3	3	4	4	5	6
.44	2754	2761	2767	2773	2780	2786	2793	2799	2805	2812	1	1	2	3	3	4	4	5	6
.45	2818	2825	2831	2838	2844	2851	2858	2864	2871	2877	1	1	2	3	3	4	5	5	6
.46	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	1	1	2	3	3	4	5	5	6
.47	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	1	1	2	3	3	4	5	5	6
.48	3020	3027	3034	3041	3048	3055	3062	3069	3076	3083	1	1	2	3	3	4	5	6	6
40	2000	2007	2105	2112	2110	2126	2122	2111	2140	2155	1	1	2	,	2	4	_	4	_
.49	3090	3097	3105	3112	3119	3126	3133	3141	3148	3155	1	1	2	3	3	4	5	6	6

ANTILOGARITHMS

Table 2

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
.50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	1	2	3	4	4	5	6	7
.51	3236	3243	3251	3258	3266	3273	3281	3289	3296	3304	1	2	2	3	4	5	5	6	7
.52	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	1	2	2	3	4	5	5	6	7
.53	3388	3396	3404	3412	3420	3428	3436	3443	3451	3459	1	2	2	3	4	5	6	6	7
.54	3467	3475	3483	3491	3499	3508	3513	3524	3532	3540	1	2	2	3	4	5	6	6	7
.55	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622	1	2	2	3	4	5	6	7	7
.56	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	1	2	3	3	4	5	6	7	8
1.50	3031	3039	3046	3030	3004	3073	3081	3090	3098	3707	1	2	3)	4	5	0	/	0
.57	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	1	2	3	3	4	5	6	7	8
.58	3802	3811	3819	3828	3837	3846	3855	3864	3873	3882	1	2	3	4	4	5	6	7	8
.59	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	1	2	3	4	5	5	6	7	8
													_	١	_			_	
.60	3981	3990	3999	4009	4018	4027	4036	4046	4055	4064	1	2	3	4	5	6	6	7	8
.61	4074	4083	4093	4102	4111	4121	4130	4140	4150	4159	1	2	3	4	5	6	7	8	9
.62	4169	4178	4188	4198	4207	4217	4227	4236	4246	4256	1	2	3	4	5	6	7	8	9
.63	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355	1	2	3	4	5	6	7	8	9
.64	4365	4375	4385	4395	4406	4416	4426	4436	4446	4457	1	2	3	4	5	6	7	8	9
.65	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	1	2	3	4	5	6	7	8	9
.66	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667	1	2	3	4	5	6	7	9	10
.67	4677	4688	4699	4710	4721	4732	4742	4753	4764	4775	1	2	3	4	5	7	8	9	10
.68	4786	4797	4808	4819	4831	4842	4853	4864	4875	4887	1	2	3	4	5	7	8	9	10
.69	4898	4909	4920	4932	4943	4955	4966	4977	4989	5000	1	2	3	4	5	7	8	9	10
	5010	5000	5025	5045	5050	5050	5000	5002		5115		•		۔ ا		_		0	
.70	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	1	2	4	5	6	7	8	9	11
.71	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	1	2	4	5	6	7	8	10	11
.72	5248	5260	5272	5284	5297	5309	5321	5333	5346	5358	1	2	4	5	6	7	9	10	11
.73	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483	1	3	4	5	6	8	9	10	11
.74	5495	5508	5521	5534	5546	5559	5572	5585	5598	5610	1	3	4	5	6	8	9	10	12
.75	5623	5636	5649	5662	5675	5689	5702	5715	5728	5741	1	3	4	5	7	8	9	10	12
.76	5754	5768	5781	5794	5808	5821	5834	5848	5861	5875	1	3	4	5	7	8	9	11	12
.77	5888	5902	5916	5929	5943	5957	5970	5984	5998	6012	1	3	4	5	7	8	10	11	12
.78	6026	6039	6053	6067	6082	6095	6109	6124	6138	6152	1	3	4	6	7	8	10	11	13
.79	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295	1	3	4	6	7	9	10	11	13
.80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13
.81	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3		6	8	9	11	12	14
.81	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5 5	6	8	9	11	12	14
.83	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8	9	11	13	14
.84		6934	6950	6966	6982	6998	7015	7031	7047	7063	$\frac{2}{2}$	3	5	6	8	10	11	13	15
							/013					3	5	0	o	10	111	13	13
	7079			7129	7145		7178	7194	7211	7228	2	3	5	7	8	10	12	13	15
.86		7261	7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8	10	12	13	15
.87	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	2	3	5	7	9	10	12	14	16
.88		7603	7621	7638	7656	7674	7691	7709	7727	7745	2	4	5	7	9	11	12	14	16
.89	7765	7780	7798	7816	7834	7852	7870	7889	7907	7925	2	4	5	7	9	11	13	14	16
.90		7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17
.91	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	9	11	13	15	17
.92		8337	8356	8375	8395	8414	8433	8453	8472	8492	2	4	6	8	10	12	14	15	17
.93		8531	8551	8570	8590	8610	8630	8650	8670	8690	2	4	6	8	10	12	14	16	18
.94	8710	8730	8750	8770	8790	8810	8831	8851	8872	8892	2	4	6	8	10	12	14	16	18
1	0013	0022	0054	0074	0005	0016	0026	0057	0070	0000	_	4	_	0	10	12	1.5	17	10
.95		8933	8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10	12	15	17	19
.96		9141	9162	9186	9204	9226	9247	9268	9290	9311	2	4	6	8	11	13	15	17	19
.97		9354	9376	9397	9419	9441	9462	9484	9506	9525	2	4	7	9	11	13	15	17	20
.98		9575	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7	9	11	13	16	18	20
.99	9772	9795	9817	9840	9863	9886	9908	9931	9954	9977	2	5	7	9	11	14	16	18	20